Indian Journal of Hill Farming, (2025); 38(1):19-26.

doi: 10.56678/iahf-2025.38.01.4

ISSN: 0970-6429

RESEARCH ARTICLE

Variation of in-situ soil moisture under different irrigation regimes: An Experience under potato production in Meghalaya

D.J. Das¹, Lala I.P. Ray^{2*}, Emillia¹, J. Das¹, G.P. Mishra¹, A.K. Singh³, N.J. Singh³ and S. Swami⁴

Abstract

Under limited availability of water, maximization of water productivity can be possibly achieved with deficit irrigation regimes. A field trial was taken with potatoes as the test crop during the winter season of 2022-23 to study the variation of soil moisture under different irrigation scenarios and crop performance under mid hills of Meghalaya. The experiment was conducted in split plot design with four different levels of irrigation regimes, viz., 45% (M1), 60% (M2), 75% (M3) and 90% (M4) as main plot treatment and three potato varieties, viz., Kufri Jyoti (V1), Kufri Megha (V2) and Kufri Giriraj (V3) under sub plot treatment and replicated thrice. The maximum variation recorded was 18.46, 21.73, 24.73 and 27%, under M1, M2, M3, and M4, respectively. Similarly, the total range of water used varied between 575.3 to 124.8 mm. The highest value of water productivity (75.34 kg ha-1 mm-1) was recorded under M4 irrigation regime. Similarly highest water productivity was recorded for V1 (54.50 kg ha-1 mm-1), over V2 and V3, but was statistically at par with V2 (50.83 kg ha-1 mm-1). **Keywords:** Deficit irrigation, Maximum Allowed Depletion, North Eastern Region (NER), Potato variety, Water productivity

Introduction

North-eastern zone of India experiences a relatively higher duration of humid climate, with heavy rainfall during the monsoon and summer months and a dry winter season. Rainfall in the North Eastern states of India is substantial (above the national average) each year (Choudhury et al., 2012; Ray et al., 2012; Dikshit and Dikshit, 2014; Ray et al., 2019). The average annual rainfall of Meghalaya, a state in Northeast India, is more than 2,000 mm, with a range between 14,000 to 740 mm (Ray et al., 2012). Furthermore, Meghalaya's hilly topography creates water deficit scenario during non-rainy seasons due to non-adherence of proper rainwater conservation strategies (Khan et al., 1987; Choudhury et al., 2012; Dey et al., 2017; Marwein and Ray, 2019). Optimising time and amount of water supplied for enhancing yield can be accomplished by creating an efficient irrigation schedule (Dey and Ray, 2017a; Gogoi et al., 2020; Devi et al., 2023).

The performance of potato cultivation, is linked to water availability and management, particularly in regions characterized by unique agro-climatic conditions, such as Northeast India (Dey and Ray, 2017b; Gogoi and Ray, 2019; Das and Ray, 2025). According to Devaux *et al.* (2014) and Scott *et al.* (2000), potatoes (Solanum tuberosum L.) are among the most significant crops in the globe, particularly in Asian and African nations. Third in terms of human consumption after rice and wheat, it ranks fourth globally in terms of production volume, after wheat, rice, and maize (Shock *et al.*, 1998; Scott and Suarez, 2011; Saxena and

Mathur, 2013; FAO, 2021; Satya et al., 2023). According to Sah et al. (2011), potato is grown all year round under assured irrigation and rainfed conditions. It has a significant impact on the farming systems and the food of people living in the northeast (Kumar et al., 2006). North East shares almost 10% of the India's total area under potato cultivation and 4% of its total production (Gupta et al., 2004). The NEH region has 18,173 ha land under cultivation, producing 1, 81,089 M t of

¹M. Sc. (Agronomy) School of Natural Resource Management, College of Postgraduate Studies in Agricultural Sciences, (CAU-Imphal), Umiam-793103, Meghalaya.

²Corresponding Author, Professor (Soil and Water Engineering), School of Natural Resource Management, College of Postgraduate Studies in Agricultural Sciences, (CAU-Imphal), Umiam-793103, Meghalaya.

^{3,4} Associate Professor and Professor, respectively, School of Natural Resource Management, College of Postgraduate Studies in Agricultural Sciences, (CAU-Imphal), Umiam-793103, Meghalaya.

*Corresponding Author: Lala I.P. Ray, Corresponding Author, Professor (Soil and Water Engineering), School of Natural Resource Management, College of Postgraduate Studies in Agricultural Sciences, (CAU- Imphal), Umiam-793103, Meghalaya, E-Mail: lalaipray@rediffmail.com

How to cite this article: Das, D.J., Ray, L.I.P., Emillia, Das, J., Mishra,G.P.,Singh, A.K., Singh, N.J., Swami,S. 2025. Variation of in-situ soil moisture under different irrigation regimes: An Experience under potato production in Meghalaya. *Indian J. Hill Farm.*, **38**(1):19-26.

Source of support: Nil

Conflict of interest: None.

Received: 29/04/2024 Revised: 21/04/2025 Accepted: 02/05/2025

potatoes (Sadawarti et al., 2013; Saxena and Mathur, 2013; Mawthaoh *et al.*, 2019).

It is necessary to consider water supply through deficit irrigation in order to maximise yield and water productivity simultaneously (Shock et al., 1992; Yuan et al., 2003; Bisht et al., 2012). According to Rudnick et al. (2017), deficit irrigation is a water management strategy used in situations where there is not enough water to meet crop evapotranspiration demands without compromising potential yield. One of the key strategies for conserving water by lowering the quantity of irrigation water used is deficit irrigation (Fereres and Soriano, 2007). However, the lack of water compromises yield. Hence, yield reduction due to water shortage must be quantified.

Taking the above considerations, an agronomic field investigation was carried out during winter season (2022-23) at the experimental field of College of Post Graduate Studies in Agricultural Science (CAU, Imphal), Umiam, Meghalaya with dual objectives to study the variation of soil moisture under different irrigation regimes and the total amount of water used for growing potato and to assess the production potential of potato and water productivity.

Materials and Methods

Experimental site and meteorological conditions

A field trial was conducted at the experimental farm of the College of Postgraduate Studies in Agricultural Sciences in the Ri-Bhoi district of Meghalaya during winter season of 2022-2023. The experimental station is located at an elevation of 950 m above Mean Sea Level at longitudes of 910 18' to 920 18' East and latitudes of 250 40' to 260 20' North. The details of the experimental site are shown in Fig. 1.

Ri-Bhoi district of Meghalaya has a subtropical humid climate, meaning it receives a lot of rainfall and experiences cold winters. Rainfall during the monsoon season often begins in the first two weeks of June and continues till the end of September. According to Ray *et al.* (2012), Umiam region of Ri-Bhoi district used to receive 2617.10 mm of average annual rainfall, with a few spells of pre-monsoon showers occurring from March to May. The months of July and August receives the highest temperature of up to 30°C, while the first week of January has the lowest temperature of 5 to 6°C.

A total of 19.3 mm rainfall was received during the experimentation period, with the 47th standard meteorological week (SMW) receiving the highest weekly rainfall of 9.1 mm. The highest recorded weekly maximum temperature, i.e., 26.88°C, occurred during the 49th SMW, while the lowest recorded temperature of 21.29°C, occurred during the 3rd SMW. The 52nd SMW registered highest mean weekly minimum temperature of 26.67°C, while the 47th SMW recorded the lowest (9.17°C). Similarly, the average relative

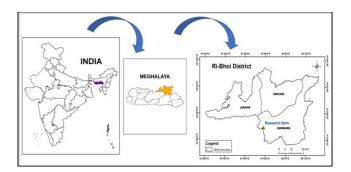


Fig 1: Location map of the experimental site

humidity was recorded to be around 72% on weekly basis. The weekly meteorological data are presented in Table 1.

Composite soil samples were collected prior to the conduct of the field experiment randomly at a depth of 0-30 cm. Representative soil samples were analysed to determine the various physico-chemical properties using standard protocols. It was found that the soil type of the trial field was sandy clay loam. The initial pH of the soil is 5.26 and its organic carbon content is 0.88%. At 0-30 cm, the average levels of available potassium (K_2O), phosphorus (P_2O_5), and nitrogen (N) were 274.6, 18.4, and 236.3 kg ha⁻¹, respectively.

Experimental design and treatment combinations

Split plot experimental design was adopted for executing this field trial. Under main plot four treatments of irrigation regimes were taken. Deficit irrigation method was followed to ascertain the Maximum Allowable depletion (MAD). Four moisture regimes (M₁: 45% of MAD, M₂: 60% of MAD, M₃: 75% of MAD, and M₄: 90% of MAD) were put under main plot and three potato varieties (Kufri Jyoti, Kufri Megha, and Kufri Giriraj) were allotted under the sub. The experiment was replicated thrice. Potatoes seed tubers were planted with 50×20 cm² spacing with 2 t ha-¹ seed rate, following the recommended fertiliser dosage of 100: 80: 60 kg ha-¹ (N: P₂O₅: K₂O).

Estimation of soil moisture percentage (%)

Soil sampling for estimation of in-situ soil moisture was done every alternate date using a soil auger and an aluminium box, soil samples were collected from each plot up to a depth of 30 cm. A digital balance was used to determine the weight of the samples. After keeping 24 hours at 105°C in the oven, the soil samples were weighed once more until a steady weight was reached. Soil moisture content was calculated by using the formula presented in Eq. 1.

Soil moisture content (%)

= [weight of water (g)/ weight of oven dry soil (g)] \times 100 ...(1)

Quantification of irrigation water

Surface method of irrigation was used during the experiment. To ensure accurate and appropriate irrigation, gravimetric soil moisture content measurements must be prerequisite.

21 D.J. Das *et al.*

Table 1: Weekly meteorological data prevailed during crop growing season and the amount of irrigation water applied during the experiment

SMW	Total Rainfall (mm)	Avg. Max. temperature (°C)	Avg. Min. temperature (°C)	Relative Humidity (%)	Avg. daily evaporation (mm)
46	0	28.00	9.93	76.92	2.80
47	9.1	26.57	9.17	72.79	1.73
48	6.0	25.36	14.64	71.68	1.53
49	1.4	26.88	17.5	70.47	1.30
50	1.4	26.67	25.36	68.06	1.40
51	1.4	24.71	26.63	77.13	0.84
52	0	25.13	26.67	69.54	1.08
1	0	24.07	24.14	71.26	1.49
2	0	23.50	23.69	69.89	1.08
3	0	21.29	23.00	70.71	1.2
4	0	22.57	22.43	79.40	1.1
5	0	21.86	20.29	77.04	0.56
6	0	21.57	18.14	74.27	0.3
7	0	22.43	15.86	74.94	0.28
8	0	23.29	18.79	74.29	0.5
9	0	25.07	19.14	57.11	0.29

In order to determine the irrigation scheduling, precisely calculated the irrigation depth and frequency, the impact of varying soil moisture levels on potatoes was studied. Before planting in each treatment, 100 mm of irrigation water was initially applied to bring the soil moisture level nearer to the field capacity for uniformity. This water was considered as application water (ploughing) and was not included in the overall volume of water utilised in the experiment.

The volumetric measurement was used to quantify irrigation water. The furrow method of irrigation was used to deliver irrigation water. A 0.5 HP electric pump was used to quantify the amount of irrigation water applied based on discharge rate. A 200 L bucket was used to record the average discharge of the pump. The time it took to fill the bucket was also recorded, and the water discharge to the respective plots was computed as a result. The discharge rate of the pump was determined volumetrically as presented in Eq. 2. The average discharge rate of pump was recorded as 0.53 lit sec-1.

Discharge rate (L sec⁻¹) =
$$\frac{\text{Amount of water collected in the bucket}}{\text{Time require to fill the bucket}}$$
... (2)

Water productivity

The water productivity of crop was calculated as the ratio of tuber yield to total amount of water applied as presented in Eq. 3 and it is expressed in kg ha⁻¹ mm⁻¹.

Crop water productivity =
$$\frac{\text{Economic yield}}{\text{Total amount of water applied}}$$
 (3)

Sampling, soil moisture monitoring and data analysis

Three (03) randomly chosen plants from each treatment plot were tagged as sample plants, with the exception of the

plant located in the border rows. Biometric observations, such as plant height, number of branches per plant, accumulation of dry matter per plant, tuber yield, and biological yield, were noted from these tagged plants. While yield attributes were taken at the time of harvesting. Using the analysis of variance approach for split plot design, the data collected from several investigations during the research were statistically analysed. According to Gomez and Gomez (1984), the difference between the treatment means was tested for statistical significance using an appropriate critical difference (CD) value at the 5% level of significance.

Results and Discussion

Total amount of water applied and irrigation scheduling

The depth of irrigation water applied and the number of irrigations given is presented in Table 2. The depths of irrigation for M_1 : 45% of MAD, M_2 : 60% of MAD, M_3 : 75% of MAD and M_4 : 90% of MAD are 69.5, 81.5, 93.5 and 105.5 mm, respectively per irrigation cycle in order to bring the soil moisture nearer to the field capacity level.

The highest total number of irrigations was applied under M_1 treatment amounting to eight (08), however least number of irrigation was given to M_4 treatment.

Soil moisture variation at deficit irrigation regimes

Based on soil moisture depletion, irrigation was applied at 45, 60, 75 and 90% of MAD, considering 0-30 cm as the effective rooting zone depth of potato. During the crop growth period, total number of irrigations in M_1 , M_2 , M_3 , and

Table 2: Irrigation depths (mm) and frequency of irrigations under different treatments

Duration of crop	M1	M2	M3	M4	Effective Rainfall (mm)
Day 1					
Day 2-11					9.1
Day 12-21	1	1			6
Day 22-31	1				1.4
Day 32-41		1			1.4
Day 42-51	1				1.4
Day 52-61	1				0
Day 62-71	1	1	1		0
Day 72-81	1			1	0
Day 82-91	1				0
Day 92-101	1	1	1		0
Day 102-111					0
Day 112-121					0
Total number of irrigation	8	4	2	1	19.3
Depth of irrigation per cycle (mm)	69.5	81.5	93.5	105.5	
Total amount of water applied (mm) (I+ER)	575.3	345.3	206.3	124.8	

Table 3: Effect of irrigation regime and potato varieties on yield, yield attributes and water productivity of potato

Treatments	Number of tubers per plant	Weight of tubers per plant (g)	Tuber yield (t ha-1)	Water productivity (kg ha-1 mm-1)					
Main plot (Levels of irrigation = 04)									
M1 – 45% of MAD	7.15	222.77	16.04	27.88					
M2 – 60% of MAD	6.27	209.19	13.61	39.42					
M3 – 75% of MAD	5.10	205.44	11.99	58.13					
M4- 90% of MAD	4.34	175.05	9.40	75.34					
S.E.(m) ±	0.34	9.22	0.82	2.86					
C.D.(p = 0.05)	1.34	36.20	3.24	11.22					
Sub-plot (Level of cultivar = 03)									
V1 – Kufri Jyoti	6.02	191.59	13.73	54.50					
V2 – Kufri Megha	6.01	177.48	12.96	50.83					
V3 – Kufri Giriraj	5.12	240.26	11.59	45.23					
S.E.(m) ±	0.22	6.96	0.55	1.59					
C.D.(p = 0.05)	0.66	20.67	1.64	4.72					

 $\rm M_4$ are 8, 4, 2, and 1 could be applied, respectively. From the observation, $\rm M_1$ recorded highest number of irrigation than $\rm M_2$, $\rm M_3$ and $\rm M_4$. The depths of irrigation for $\rm M_1$, $\rm M_2$, $\rm M_3$ and $\rm M_4$ are 69.5, 81.5, 93.5 and 105.5 mm, respectively per irrigation cycle to bring the soil moisture nearer to the field capacity level (Table 2). Result showed that, $\rm M_1$ recorded the

highest amount of irrigation water applied, *i.e.*, 556 mm due to less depletion of moisture level, more frequent irrigation was needed. The total water used was calculated by taking the rainfall received and irrigation water used during the cropping season. Total amount of water used (irrigation + effective rainfall) was 575.3, 345.3, 206.3, 124.8 mm under

23 D.J. Das *et al.*

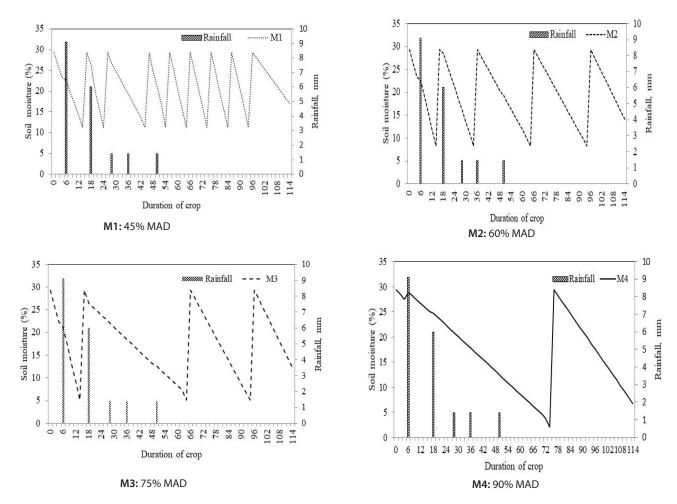


Fig 2: Soil moisture variation at deficit irrigation regimes

 M_1 , M_2 , M_3 , and M_4 , respectively. The variation of in-situ soil moisture under different treatment is shown in Fig.2. (MAD = Maximum Allowable Depletion)

The variation of *in-situ* soil moisture was found to take a form of sinusoidal curve under different moisture regime as reported by various researchers (Dey *et al.*, 2017; Marwein *et al.*, 2017; Marwein and Ray, 2021; Mawthaoh *et al.*, 2023).

Yield attributes and Yields

The effect of irrigation regimes and potato cultivars on yield and yield attributes and water productivity are shown in Table 3.

It may be noted that the yield and yield attributes were highest in treatment M1. Yield level in M1, M2 and M3 were 70.64, 44.79 and 27.55% more than M4 due to lesser depletion of available soil moisture from the root zone which might have contributed the enhanced final yield of potatoes. These findings can be supported from the previous findings of Yuan et al.(2003), Wang et al., (2006), Ray et al.(2011), lerna and Mauromicale (2012), Sun et al.(2015), Kassu et al.(2017), King et al. (2020), Ray et al. (2023a, b). Similarly, the recorded values of water productivity under M4, M3 and M1 treatments were 170.23, 108.50 and 41.39% more than M1.

The reason for highest water productivity in M4 was due to least amount of water usage, though it had the lowest yield. The M4 treatment received only one irrigation. It was received during the tuber bulking period, thus contributing a substantial increment of yield. Out of all the main plot treatments, M4 had the highest water productivity (75.34 kg ha-1 mm-1), over that of M3 (58.13 kg ha-1 mm-1), M2 (39.42 kg ha-1 mm-1), and M1 (27.88 kg ha-1 mm-1). The order of water productivity in main plot treatments was ranked M4>M3>M2>M1. Out of all the sub plot treatments, Kufri Jyoti had the highest water productivity (54.50 kg ha-1 mm-1), over both V2 (50.83 kg ha-1 mm-1) and V3 (45.23 kg ha-1 mm-1) and at par with that of Kufri Megha (50.83 kg ha-1 mm-1). These findings can be supported from the previous findings of Badr et al. (2012), Jha et al. (2017), Begum et al. (2018), Carli et al. (2014), Ray et al. (2017), Paredes et al. (2018), Sethi et al. (2022).

Similarly, it can be observed that irrigation during the vegetative growth in treatment M_1 was less influential in water productivity than irrigation during tuber bulking in treatment M_4 . Irrigation during vegetative growth is associated with higher evapotranspiration loss due to higher LAI. Hence, the water stress during vegetative growth and

application during critical period seems to be beneficial to increase water productivity at expense of yield decrement. Several previous studies also reports that water stress is associated with increase in water productivity (Ati *et al.*, 2012, Sadawarti *et al.*, 2013, Jha *et al.*, 2017, Begum *et al.*, 2018, Ahmadi *et al.*, 2010; Ierna and Mauromicale, 2012, Carli *et al.*, 2014, Paredes *et al.*, 2018; Gujar *et al.*, 2022). The significant difference in water productivity in sub plots was due to higher yield of potato cultivar kufri jyoti as compared to kufri metha and kufri giriraj at same level of water application.

The yield attributes, yield as affected by variety and irrigation schedule are presented in the Table 3. Higher irrigation enhances emergence of seed tubers, which influences the ultimate plant population. It results from distributing soil moisture uniformly and maintaining the ideal soil temperature required for emergence and establishment. The results are similar with those of previous researchers (Singh et al., 2008; Kumar and Bhatia, 2019; Wang et al., 2006; Wanniang et al., 2019; Mawthaoh et al., 2023). The tuber yield was significantly impacted by irrigation regimes, with treatment M1 (16.04 t ha-1) recording the maximum tuber yield compared to treatments M1, M3, and M4. Treatment M2 (13.61 t ha-1) and M1 (16.04 t ha-1) were statistically at par. With regard to sub plot treatments, Kufri Jyoti (13.73 t ha-1) considerably out performed Kufri Megha and Kufri Giriraj in terms of economic returns. However, Tuber yield in Kufri Jyoti (13.73 t ha-1) was statistically at par to that of Kufri Megha (12.96 t ha-1).

The yield levels in irrigation regimes viz., M1, M2, and M3 were found to be 70.64, 44.79, and 27.55% higher than those in M4. Due to larger plant populations, more tubers per plant, and larger tuber weights per plant, and tuber yield increases as water application increased. Tuber initiation and number of tubers per plant both increases when irrigation water was provided in suitable amounts (Shock et al., 1992). According to Onder et al. (2005), Amanulla et al. (2010), Kumar et al. (2007), Bisht et al. (2012), water stress is linked to a significant decrease in tuber numbers as against optimum soil moisture. The weight of the tubers increased with each irrigation once they are initiated (Eldredge et al., 1996; Shock et al., 1998). On the other hand, even though, treatment, M3 had half as much irrigation as treatment M2, it can be seen that the yield levels in M2 and M3 were statistically at par. Possible causes for this may be due to the fact that both the treatments received the same amount of irrigations (2) during the critical stage of the crop at stolon and tuber bulking. In the varietal treatments, the difference in yield was due to difference in varietal characters in terms of growth and yield attributes. Kufri Giriraj performed least in terms of all growth and yield parameters except tuber weight, which resulted in lower yield than Kufri Jyoti and Kefri Megha.

Conclusion

Understanding the soil moisture dynamics is essential for sustainable water management strategies that can mitigate the impacts of water scarcity in potato cultivation. The present field investigation revealed that, the variation of soil moisture is high under maximum available depletion of soil moisture and vice versa. Soil moisture in the root zone is one of the essential inputs for better growth and development of potato. Highest water productivity to a tune of 75.34 kg ha⁻¹ mm⁻¹ was recorded for 90% maximum allowable depletion irrigation regime. Similarly, Kufri Jyoti recorded highest yield to a tune of 13.73 t ha⁻¹ which was statistically at par with Kufri Megha (12.96 t ha⁻¹). The farmers of Meghalaya may take up these varieties under water limiting scenarios to enhance water productivity to a greater extent.

Acknowledgment

The financial support received inform of ICAR-NRS fellowship during the tenure of the research work is acknowledged along with the logistic supports obtained from the Dean, College of Post Graduate Studies in Agricultural Sciences (CAU-Imphal).

References

- Ahmadi, S.H., Andersen, M.N., Plauborg, F., Poulsen, R.T., Jensen, C.R., Sepaskhah, A.R. and Hansen, S. 2010. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agricultural Water Management, 97(11):1923-1930.
- Amanullah, A.S., Talukder, S.U., Sarkar, A.A. and Ahsanullah, A. 2010. Yield and water use efficiency of four potato varieties under different irrigation regimes. Bangladesh Research Publication Journal, 14(3):254-264.
- Ati, A.S., Iyada, A.D. and Najim, S.M. 2012. Water use efficiency of potato (*Solanum tuberosum* L.) under different irrigation methods and potassium fertilizer rates. Annals of Agricultural Sciences, 57(2):99-103.
- Badr, M.A., El-Tohamy, W.A. and Zaghloul, A.M. 2012. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agricultural Water Management, 110:9-15.
- Begum, M., Saikia, M., Sarmah, A., Ojah, N.J., Deka, P., Dutta, P.K. and Ojah, I. 2018. Water management for higher potato production: a review. International Journal of Current Microbiology and Applied Sciences, 7(5):24-33.
- Bisht, P., Raghav, M. and Singh, V.K. 2012. Effect of different irrigation schedules on the growth and yield of drip irrigated potato. Potato Journal, 39(2):202-204
- Carli, C., Yuldashev, F., Khalikov, D., Condori, B., Mares, V. and Monneveux P. 2014. Effect of different irrigation regimes on yield, water use efficiency and quality of potato (*Solanum tuberosum* L.) in the lowlands of Tashkent, Uzbekistan: A field and modelling perspective. Field Crops Research, 163:90-99.
- Choudhury, B.U., Das, A., Ngachan, S.V., Slong, A., Bordoloi, L.J. and Chowdhury P. 2012. Trend analysis of long term weather variables in mid altitude Meghalaya, North-East India. Journal of Agricultural Physics, 12(1):12-22.
- Das, D.J., Ray, L.I.P. 2025. Crop water production functions for

25 D.J. Das *et al.*

potato (Solanum tuberosum) in North Eastern Hilly Region of Meghalaya, India. Journal of Agricultural Engineering (ISAE), 62(1): 1-11. https://doi.org/10.52151/jae2025621.1905.

- Devaux, A., Kromann, P. and Ortiz O. 2014. Potatoes for sustainable global food security. Potato Research, 57:185-199.
- Devi, Th. I., Ray, L.I.P., Swetha, K., Jyothi, K.S., Ram, V. and Swami, S. 2023. Performance of potato with organic mulches in Meghalaya. Indian Journal of Hill Farming 36(1):153-159. doi: 10.56678/iahf-2023.36.01.19.
- Dey, J.K. and Ray, L.I.P. 2017a. Estimation of water use efficiency and economics of potato varieties under different methods of irrigation. International Journal of Economic Plants, 04(04):152-159.
- Dey, J.K. and Ray, L.I.P. 2017b. Performance of potato cultivars under different irrigation regimes at North Eastern Indian plateau. Journal of Hill Agriculture 8(4):417-423.
- Dey, J.K., Ray, L.I.P. and Marwein, Y. 2017. In-situ soil water dynamics under different irrigation methods in North East India. Journal of Agri search 4(2):1-9.
- Dikshit, K.R. and Dikshit, J.K. 2014. Weather and climate of northeast India. North-East India: land, people and economy. doi. org/10.1007/978-94-007-7055-3 6.
- Eldredge, E.P., Holmes, Z.A., Mosley, A.R., Shock, C.C. and Stieber, T.D. 1996. Effects of transitory water stress on potato tuber stem-end reducing sugar and fry color. American Potato Journal, 73:517-530.
- Fereres, E. and Soriano, M.A. 2007. Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2):147-159.
- Food and Agriculture Organisation (FAO) 2021. Production/yield quantities of potatoes in world. https://www.fao.org/faostat/en/#data/QCL/visualize. (Accessed on 25th May 2023).
- Gogoi, M. and Ray, L.I.P. 2019. Performance of winter potato with varied dates of planting under mid hills of Meghalaya. Indian Journal of Hill Farming. Special Issue.(June) 34-41.
- Gogoi, M., Ray, L.I.P., Swami, S., Kant, K. and Meena, N.K. 2020. Performance of potato variety Kufri Megha under different irrigation scheduling and date of planting at North Eastern Indian mid hills. Journal of Environmental Biology 41(6):1605-1610. doi.org/10.22438/jeb/41/6/SI-225.
- Gomez, K.A. and Gomez, A.A. (1984). Statistical procedure for Agricultural research, 2ndEdn. International Rice Research Institute, Los Banos, Philippines. John Willy and Sons, New York. pp. 324.
- Gupta, V.K., Thakur, K.C., Kumar, S., Pandey, S.K. and Sah, U. 2004. True Potato Seed-an alternative technology for potato production in North eastern hill region. Technical Bulletin, (64): 1-6.
- Gurjar, G.N., Ram, V., Thakuria, D., Singh, A.K., Ray, L.I.P. and Singh, R. 2022. Impact of different sowing dates and mulching practices on economics of potato (K. Himalini) crop. The Pharma Innovation Journal; 11(1): 198-200.
- lerna, A. and Mauromicale, G. 2012. Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime. Agricultural Water Management, 115:276-284.
- Jha, G., Choudhary, O.P. and Sharda, R. 2017. Comparative effects of saline water on yield and quality of potato under drip and furrow irrigation. Cogent Food Agriculture, doi.org/10.1080/23311932.2017.1369345.
- Kassu, T., Tilahun, H., Yared, D. and Watanabe, H. 2017. Effect of

- irrigation regimes on yield and water use efficiencies of potato. International Journal of Plant Production, 11(3):389-405
- King, B.A., Stark, J.C. and Neibling, H. 2020. Potato irrigation management. Potato Production Systems. doi. org/10.1007/978-3-030-39157-7_13.
- Kumar, M. and Bhatia, A.K. 2019. Effect of irrigation methods and planting dates on percent of emergence in potato (*Solanum tuberosum* L.). Journal of Pharmacogny and Phytochemistry, 8(4):1406-1412.
- Kumar, S., Singh, P.H., Gupta, P.H., Sah, U. and Pandey, S.K. 2006. Integrated development of Horticulture in North Eastern states of India (MMI). Technical Bulletin, (76):4-14.
- Kumar, S., Asrey, R. and Mandal G. 2007. Effect of differential irrigation regimes on potato (*Solanum tuberosum*) yield and post-harvest attributes. Indian Journal of Agricultural Sciences, 77(6):366-368.
- Marwein, Y., Ray, L.I.P. and Dey, J.K. 2017. Influence of mulch on depletion pattern of in situ soil moisture in Rajma (Kidney Beans) crop system of Meghalaya. e-planet 15(1):55-60.
- Marwein, Y. and Ray, L.I.P. 2019. Performance of Rajma (*Phaseolus vulgaris*) cultivars under organic mulches in Meghalayan Plateau of North Eastern India. Legume Research- an international Journal 42(1):114-118. doi: 10.18805/LR-3827.
- Marwein, Y. and Ray, L.I.P. 2021. Variation of Bio-phisco edaphic parameters under organic mulch grown with French bean (*Phaseolus vulgaris* L.). Indian Journal of Hill Farming 34(1):154-1160.
- Mawthaoh, J.M., Ray, L.I.P., Singh, A.K., Singh, N.J. and Dhivya, R.S. 2019. Performance of potato (*Solanum tuberosum* L.) with organic inputs in north eastern India. e-planet 17 (2):117-127
- Mawthaoh, J.M. Mishra, G.P. and Ray, L.I.P. 2023. Maximizing potato yield and water use efficiency: stage based irrigation scheduling with organic inputs in North Eastern India. Indian Journal of Soil Conservation, 51(3):228-235.doi:10.59797/ijsc. v51.i3.139
- Onder, S., Caliskan, M.E., Onder, D. and Caliskan S. 2005. Different irrigation methods and water stress effects on potato yield and yield components. Agricultural Water Management,73(1):73-86.
- Paredes, P.D., Agostino, D., Assif, M., Todorovic, M. and Pereira, L.S. 2018. Assessing potato transpiration, yield and water productivity under various water regimes and planting dates using the FAO dual Kc approach. Agricultural Water Management, 195:11-24.
- Ray, L.I.P., Panigrahi, P.K., Moulick, S. and Mal B.C. 2011. Integrated aquaculture within irrigation options- an economic analysis in Indian context. Agricultural Engineering Today 35(3):3-9.
- Ray, L.I.P., Bora, P.K., Ram, V., Singh, A.K., Singh, R. and Feroze, S.M. 2012. Probable annual maximum rainfall for Barapani, Meghalaya. Journal of Progressive Agriculture, 3(1):16-18
- Ray, L.I.P., Suting, I., Siangshai, K., Singh, A.K., Singh, R. and Bora, P.K. 2017. Performance of winter vegetables under gravityfed drip irrigation system in North Eastern India (Chapter-1). Edited book Name: Micro irrigation scheduling and practices. Edited By: Megh R. Goyal, B. Panigrahi and S.N. Panda. Apple Academic Press, CRC press-a Taylor and Francis group. pp 3-22.
- Ray, L.I.P., Bora, P.K., Singh, A.K., Ram, V., Singh, R. and Feroze, S.M.

- 2019. Dry and Wet spell Rainfall probabilities in planning rice based cropping system of Meghalaya. Journal of Agrometeorology 21 (Special issue -»NASA 2014» part-III): 7-16.
- Ray, L.I.P., Swetha, K., Singh, A.K., and Singh, N.J. 2023a. Water productivity of major pulses- a review. Agricultural Water Management (281):108249. doi.org/10.1016/j .agwat. 2023.108249.
- Ray, L.I.P., Jyothi, K.S., Singh A.K., Bharati, V. and Pandey, P.K. 2023b. Strategies for Water Productivity Enhancement in Maizea Comprehensive Review. Irrigation and Drainage:1-16. doi:10.1002/ird.2879.
- Rudnick, D., Irmak, S., Ray, C., Schneekloth, J., Schipanski, M., Kisekka, I. and Porter, D. 2017. Deficit irrigation management of corn in the high plains: A review. In Proceedings of the 29th Annual Central Plains Irrigation Conference. 66-84.
- Sadawarti, M.J., Singh, S.P., Kumar, V. and Lal, S.S. 2013. Effect of mulching and irrigation scheduling on potato cultivar Kufri Chipsona-1 in Central India. Potato Journal, 40(1): 65-71.
- Sah, U., Dubey, S.K. and Sharma, J.P. 2011. Potato marketing in north east region of India: a diagnostic study. Journal of Community Mobilization Sustainable Development, 6(2):194-201.
- Satya, C.M.S.S., Swami, S., Singh, N.J. and Ray, L.I.P. 2023. Prerequisites for development of targeted yield equation through soil test crop response approach. Agricultural Mechanization in Asia. 54 (08):15339-15349.
- Saxena, R., Mathur, P. 2013. Analysis of potato production performance and yield variability in India. Potato Journal, 40(1):38-44
- Scott, G.J. and Suarez, V. 2011. Growth rates for potato in India and their implications for industry. Potato Journal, 38(2):100-112.
- Scott, G.J., Rosegrant, M.W. and Ringler, C. 2000. Global projections for root and tuber crops to the year 2020. Food Policy,

- 25(5):561-597.
- Sethi, A., Sahoo, N., Panigrahi, B., Dash, B. and Ray, L.I.P. 2022. Performance of sunflower with different irrigation methods: the coastal plain zone of Eastern India. (Chapter-6). Edited book Name: Fertigation Technologies in Micro Irrigation Requirements, Efficiency, and Crop Performance. Edited By: Megh R. Goyal and Lala I.P. Ray. Apple Academic Press, CRC press-a Taylor and Francis group, 336 p. (ISBN: 9781771889438) pp 249-268.
- Shock, C.C., Feibert, E.B. and Saunders, L.D. 1998. Potato yield and quality response to deficit irrigation. Horticultural Sciences, 33(4):655-659.
- Shock, C.C., Zalewski, J.C., Stieber, T.D. and Burnett, D.S. 1992. Impact of early-season water deficits on russet Burbank plant development, tuber yield and quality. American Potato Journal, 69:793-803.
- Singh, C., Singh, P. and Singh R. 2008. Modern techniques of raising field crops. Oxford and IBH Publishing Co. Pvt. Ltd, New Delhi.
- Sun, Y., Cui, X. and Liu, F. 2015. Effect of irrigation regimes and phosphorus rates on water and phosphorus use efficiencies in potato. Scientific Horticulturae, 190:64-69.
- Wang, F.X., Kang, Y. and Liu, S.P. 2006. Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain. Agricultural Water Management 79(3):248-264.
- Wanniang, S.K., Singh, A.K., Ram, V., Das, A., Ray, L.I.P. and Singh, N.J. 2019. Effect of organic and inorganic nutrient application in vegetable pea on growth, yield and net return from succeeding maize in vegetable pea-maize cropping sequence. Indian Journal of Hill Farming. Special Issue,(June):94-101.
- Yuan, B.Z., Nishiyama, S. and Kang, Y. 2003. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agricultural Water Management, 63(3): 153-167.